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New Interpolation Method for Quadrature
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Abstract—This paper presents a new interpolation method
suitable for increasing the measurement resolution obtainable
from quadrature encoder signals. Based on the existing sinu-
soidal signals, high-order sinusoids can be derived, from which
binary pulses can be generated, which can be decoded using only
standard servo controllers for position information. A look-up
table, constructed off-line, serves as the inferencing engine for
the proposed method. Imperfections in the encoder signals can
be directly compensated for in the look-up table, including mean
and phase offsets, amplitude difference, and waveform distortion.
Simulation and experimental results are provided in this paper.

Index Terms—Encoder resolution, interpolation errors, look-up
tables, measurement interpolation, quadrature encoder signals.

I. INTRODUCTION

H IGH-PRECISION and resolution motion control relies
critically on the precision and resolution achievable from

the encoders. These factors are in turn limited by the technology
behind the manufacturing of encoders. To date, the scale grating
on linear optical encoders can be manufactured to less than
four micrometers in pitch, but, clearly, further reduction in
pitch is greatly constrained by physical considerations. This
implies an optical resolution of one micrometer is currently
achievable. Interpolation using soft techniques will provide
an interesting possibility to further improve on the encoder
resolution, by processing the analog encoder signals online
to yield the small intermediate positions.

The error sources associated with position information ob-
tained this way can be classified under pitch and interpolation
errors. Pitch errors are due to scale manufacturing tolerances
and mounting distortion. They can be compensated via the same
procedures that will be carried out for general geometrical error
compensation. Interpolation errors are associated with the accu-
racy of subdivision within a pitch, affecting any calibration per-
formed. Ideal signals from encoders are a pair of sinusoids with
a quadrature phase difference between them. Interpolation op-
erates on the relative difference in amplitude and phase of these
paired sinusoids. Therefore, interpolation errors will occur if the
pair-periodic signals deviate from the ideal waveforms on which
the interpolation computations are based. These deviations must
be corrected before interpolation, using digital signal processing
techniques, to reduce the interpolation errors.

The technology to compensate the mean value errors, phase
and amplitude errors for two quadrature sinusoidal signals was
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first introduced by Heydemann [1]. He used least squares fitting
to compute these error components efficiently and made correc-
tion for the two nonideal sinusoidal signals. Using this method,
K. P. Birch [2] was able to calculate optical fringe fractions to
nanometric accuracy. By making use of the amplitude variation
with angle, Birch divided one period of the sinusoidal signal
into equiangular segments to increase the effective electrical
angle resolution. The micro step controller [3] and encoder code
compensation technology [4] have been developed based on this
method. Relevant applications can also be found in [5], [6].

These interpolation approaches generally require explicit
high-precision analog-to-digital converters in the control
system, and a high-speed DSP to compute the electrical angle
to the required resolution. Therefore, they are inapplicable
to the typical servo controller with only digital incremental
encoder interface. Furthermore, it is cumbersome to integrate
sinusoidal correction with interpolation since the correction
parameters must be calibrated off-line. As a result, most servo
controllers that are able to offer interpolation have assumed
perfect quadrature sinusoids. As a result, specifications re-
lating to resolution may be achievable, but the accompanying
accuracy cannot be guaranteed. The current effort for sinusoid
correction also does not consider error in the form of waveform
distortion, i.e., the actual signal may be periodic but is not
perfectly sinusoidal. These errors are certainly significant when
sub-micron resolution and accuracy are required.

This paper presents a new method to carry out both correc-
tion and interpolation, independent of the servo controller. As
a result, the method is applicable to most servo controllers, in-
cluding those with only digital incremental encoder interfaces.
The basic idea is to derive high-order sinusoids based on ex-
isting quadrature sinusoids from the encoder. These high-order
signals may in turn be converted to a series of high-frequency
binary pulses that are readily decoded by standard servo con-
trollers. A look-up table is used to implement the idea with little
computational requirements, compared to the online computa-
tion of electrical angle necessary in current interpolators. Sinu-
soidal corrections, including mean and phase offsets, amplitude
difference and waveform distortion, can be directly reflected in
the look-up table. This process is usually done offline, although
the table can also be updated adaptively online to reflect any
subsequent changes or drift in the encoder signals. Simulation
and experimental results are provided to highlight the principles
and applicability of the proposed method.

II. PRINCIPLE OF THEPROPOSEDINTERPOLATIONMETHOD

The basic idea of the proposed interpolation method is to de-
rive high-order sinusoids based on the fundamental one. From
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Fig. 1. Sinusoidal signals correction.

these, binary pulses can be generated which can be readily de-
coded by standard servo controllers for position information. As
an example, given the values of and , and

can be obtained from the trigonometry relations:

(1)

In general, assuming and are known with suf-
ficient precision, and can be
derived from the following general equations

(2)
Using an electronic comparator to detect zero crossings,
quadrature binary pulses may in turn be obtained from
and . These pulses are more readily decoded using
most standard servo controllers or CNC systems for position
information. A further four times interpolation can be obtained
from these signals. The method eliminates the need for preci-
sion analog-to-digital signal acquisition and processing units
within the control system for interpolation purposes, since
interpolation has been done independently of the controller.

A look-up table will serve as the inferencing engine to provide
the signal interpolation (Section IV). Errors in the originating
encoder signals can then be directly reflected in the entries of
the look-up table without any separate correction mechanisms.
These errors will include waveform distortion error, which has
not been duly addressed in the literature reported, to the best of
our knowledge.

III. PRE-INTERPOLATION SIGNAL CONDITIONING

Before interpolation, it is important to correct the errors in
the originating encoder signals. Commonly encountered errors
in the encoder signals are the mean and phase offsets, amplitude
difference and waveform distortion. This section will describe

how some of these error components can be calibrated and
corrected.

Ideally, the quadrature encoder signals (denoted byand
respectively) are identical sinusoidal signals displaced by a

phase of with respect to each other

(3)

denotes the instantaneous phase anddenotes the amplitude
of the signals.

According to the Heydermann method [1], the more general
equations relating the ideal and practical encoder signals are

(4)

where and are the mean values of the signals andis the
phase shift. The and are values obtained from the encoder.

and , are the actual amplitudes of the encoder
signals.

Direct simplification of (3) and (4) yields

(5)

where , are the constants, and they can be iden-
tified online or offline by a least squares fitting routine [1].

From , the offset parameters of the encoder signal may be
derived as follows

(6)
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TABLE I
LOOK-UP TABLE BASED ON ~u ONLY

Consequently, the corrected and united signals can be obtained
as

(7)

It should be noted that this processing is usually done offline on
logged encoder information over the entire travel of the actuator.
If , , , and vary significantly with time, a recursive
least square fitting can be applied to recursively compute these
parameters online as they change.

This method has assumed a sinusoidal structure in the en-
coder signal in the formulation of the least squares estimation
algorithm. As a result, it is not able to handle any error due to
waveform distortion.

An illustration of the sinusoidal signals with no waveform
distortion, before and after correction, using the above method
is given in Fig. 1. The correction parameters are

IV. CONSTRUCTION OF ALOOK-UP TABLE

While and can be computed from (2), it is
too inefficient to be viable when the encoder signals are to be
processed at high speed, especially whenis large. A look-up
table can be designed instead for this purpose. The table can
output directly the values of and , given the
inputs and .

A. Look-Up Table Based on Only

To simplify the inferencing procedure, the values of
and can be pre-computed and recorded corresponding
to pre-determined samples of eitheror , and the sign of the
other (for illustration, we will use and the sign of for this
purpose). To simplify the addressing of the table, these samples

are obtained at equal intervals over the entire amplitude
range from 1 to 1 (instead of over the entire range of electrical
angle over one period). The samples are obtained atinterval
over this range, and thus there will be a total number ofsam-
ples obtained over each quadrant of the sinusoid. There are thus

samples per period. A largewill result in finer interpolation
resolution; however, the trade-off is a larger look-up table and
increased sensitivity to noise.

As an example, consider and . The look-up
table is accordingly set up as in Table I for one period.

Given the real-time value of and sign of , the associated
table entry can be directly located since the sample interval is

TABLE II
INDEX TABLE

Fig. 2. Variation of amplitude against angle.

Fig. 3. Interpolation based on~u .

fixed and known. Table II serves as the search table to locate the
relevant entries efficiently. We first define indices , ,
as

round

One potential problem with this tabulation method arises due
to the large nonlinear variation of the amplitude ofwith the
electrical angle . Using pre-recorded samples of equally
spaced in amplitude, will mean a varying interval of the corre-
sponding angle as shown in Fig. 2.

This angle resolution is poor near the vicinity of
. Thus, to have sufficient information

pre-recorded from this part of the signal,must be very large
which will correspondingly imply a large look-up table. Fig. 3
shows the interpolation result, when and .
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TABLE III
LOOK-UP TABLE FOR n = 16

TABLE IV
INDEX TABLE

The waveforms of and are distorted around
.

B. Look-Up Table Based on Both and

To overcome this difficulty, amplitudes of both
and may be pre-recorded, since for the region around

, has a much more even relationship
between the amplitude and phase angle. Therefore,can be
used more effectively for the inferencing procedure instead in
these areas. To this end, we propose that for , we
will use as the basis to search for the table entry. Otherwise,
the amplitude of is used. Essentially, this means the look-up
table now consists of more portions (eight instead of four)
corresponding to various parts of and .

The look-up table for is given in Table III.
There are samples over the amplitude range of 0 to 0.707

and, therefore, the division is now . There are also
samples over the range 0.707 to 1, thus having a finer division
in this poor angle resolution region. To facilitate the efficient
and quick access to the appropriate part of the look-up table, an
index table (similar to Table II) is useful. To this end, we also
define indices , , as:

round

round

round

(8)

Based on these indices, the following index table (Table IV)
yields the actual points where the appropriate and

can be directly located ( ), corresponding to the
various parts of and respectively.

Fig. 4 shows the interpolation results when and
. There is no waveform distortion even though ,

which is smaller than that used in Fig. 2 ( ).

Fig. 4. Interpolation based on both~u and~u .

Fig. 5. Waveform error mapping.

C. Maximum Interpolation

The maximum interpolation achievable is limited by the
minimum number of samples to be recorded in one period of
the raw encoder sinusoid signal, and the minimum number of
samples required to appear over one period of the high-order
sinusoid to be generated according to the following equation:

(9)

Here, is the maximum number of samples recorded in one
period of , and is the minimum number of samples to
appear over one period of [since one cycle of
will contain cycles of ]. The factor of four arises due
to the additional fourfold interpolation for digital encoders. For
example, if and an interpolation of 1024 is required (i.e.,

), then , i.e., we need to acquire at least
1536 samples over one period of the raw signal. It should be
noted that the limit on interpolation due to sampling is consid-
ered in (9). Noise sensitivity is another issue that is considered
separately in Section IV-G.

D. Waveform Distortion

In Section III, we have assumed that the signals from the en-
coder are ideal and periodic sinusoidal signals, with no wave-
form distortion. In practice, the waveform of the actual encoder
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Fig. 6. Quadrature sinusoidal signal decoding.

Fig. 7. Interpolation(n = 4).

signals deviate from the ideal sinusoidal waveform. Therefore,
corrections based on the ideal sinusoidal waveform assumption
may yield inaccurate position information that may not be ac-
ceptable for applications with high-precision requirements. It
is more reasonable to assume that the encoder signal is peri-
odic and reproducible in the waveform that is not necessarily
sinusoidal. In this case, since the nonsinusoidal waveforms are
available, we can use an error mapping method to map them into
sinusoidal ones. The idea is depicted in Fig. 5. The look-up ta-
bles of Section IV continue to be applicable.

It should be cautioned that this is possible if the distorted
waveforms are periodic and there exists a one-to-one mapping
of each point to the ideal sinusoid. It is also necessary for the
A/D converter to have a wordlength sufficient to resolve two
different points on the waveform.

E. Conversion to Binary Pulses

In order for the encoder signals to be received by a gen-
eral-purpose incremental encoder interface, the quadrature si-
nusoidal signals must be converted to a series of binary pulses.
An analog comparator may be used to transform the high-order
sinusoids into pulses. As shown in Fig. 6, the comparator will
simply switch the pulse signals when the associated sinusoidal
signal crosses zero. The rest of the analog information will not
be used.

Alternatively, this transformation can be more efficiently
done within the look-up table. The and entries

Fig. 8. Interpolation(n = 16).

Fig. 9. Interpolation and conversion to quadrature pulses(n = 16).

Fig. 10. Interpolation and conversion to quadrature pulses(n = 32).

in the table can be directly converted into binary values (and
respectively) according to the following equations:

(10)

Thus, we can generate and which are quadrature square
curves directly from Table III. can be 0 or a small value set
according to the threshold of measurement noise.

F. Direct Conversion to Digital Position

The pulse information in Table III can be easily converted into
digital position values, which can be directly used for control
purposes without further computations. This is especially true
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Fig. 11. Mapped interpolation(n = 8).

if the aforementioned interpolation method is integrated into a
general digital controller. Alternatively, the encoder card can
be made PC-bus based and the general motion controller can
acquire the digital position value directly from the register or
shared memory. In this case, the D/A converters are not required.

G. Practical Constraints

Similar to existing interpolation methods based on computa-
tion of the electrical angle, the proposed approach is also subject
to practical constraints such as noise sensitivity and digitization
errors.

In order to resolve each sample (separated by ) of the
encoder’s signal, the A/D converter should have a wordlength
sufficient to meet the following condition:

Conversely, given a fixed wordlength, the resolution and
therefore the final interpolation achievable will be limited
accordingly.

The bandwidth ( ) of the control electronics limits the
number of pulses which can be acquired per unit time, which
in turn limits the maximum velocity achievable by the
actuator in order for interpolation at to still work well. An
estimate of the velocity can be obtained from the following
equation, where is the encoder pitch:

Noise arising in encoder signals should be minimized prior to
interpolation by proper shielding and grounding of the transmis-
sion and reception circuits. However, it is unlikely that it can be
totally eliminated. The higher order sinusoids generated from
the proposed interpolation approach can be contaminated by
measurement noise. However, the final measurement can be rel-
atively unaffected if the conversion to binary pulses at the zero
crossing is properly handled to avoid erroneous switching due
to noise. This is usually handled in practice via the hysteresis
(or switching threshold) in the comparator so that switching can
only happen when the zero point is crossed sufficiently. The
hysteresis level is selected to correspond to an estimate of the
amplitude of the measurement noise.

V. EXPERIMENTS

A dSPACE controller with a high-speed A/D card (with a
wordlength of 12 b) is first used to acquire the raw quadrature
sinusoidal signals from the Heidenhein linear encoder LIP481
for the pre-interpolation signal conditioning. The compensation
parameters are: , ,

, . This process is carried out offline.
Interpolation is subsequently carried out based on the pro-

posed method. Fig. 7 shows the interpolation result with .
This (as well as subsequent results to be presented) is done on-
line with the actuator controlled to run at a constant speed.

Fig. 8 shows the results with .
Fig. 9 shows the results with and in addition, the

look-up table entries are converted to binary values, according
to Section IV-D, to yield binary pulses directly. To allow the
pulses (with similar amplitudes) to be shown more clearly in
Fig. 9, the amplitude of is deliberately set to 0.8.

Fig. 10 shows the results with .
To more clearly illustrate the situation with nonsinusoidal

encoder signals and the correction using mapping, triangular
waveforms are simulated and mapped to sinusoidal ones. The
interpolation results for and their Lissajous figures are
shown in Fig. 11. Current interpolators that rely on a computa-
tion of electrical angle for interpolation will be inadequate when
applied to these periodic but nonsinusoidal signals.

VI. CONCLUSION

A new interpolation method is developed in this paper,
suitable for increasing the measurement resolution obtainable
from quadrature encoder signals. Based on the existing sinu-
soidal signals, high-order sinusoids are derived, from which
binary pulses are generated which can be decoded using only
standard servo controllers for position information. A look-up
table, constructed off-line, serves as the inferencing engine
for an effective way of generating the signals online with
minimal computational burden. Imperfections in the encoder
signals can be directly compensated offline in the look-up
table, including mean and phase offsets, amplitude difference
and waveform distortion. Simulation and experimental results
provided illustrate the effectiveness of the proposed method.
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