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Micro-Positioning of Linear-Piezoelectric Motors
Based on a Learning Nonlinear PID Controller

K. K. Tan, Member, IEEE, Tong Heng Lee, Member, IEEE, and Huixing X. Zhou

Abstract—In this paper, a learning nonlinear proportional inte-
gral derivative (PID) controller is developed for vaguely modeled
nonlinear systems under the influence of significant disturbance
and noise. The control scheme is generic in nature, but it is applied
specifically to the micropositioning of linear-piezoelectric motors
in this paper. The design of the control scheme does not require a
full mathematical model of the nonlinear system. Simulation and
experimental results are provided to highlight the good motion con-
trol performance achieved from the control scheme.

Index Terms—Learning control, micro-positioning, nonlinear
PID control, piezoelectric actuators.

I. INTRODUCTION

PIEZOELECTRIC actuators are innovative manipula-
tors which have shown a high potential in applications

requiring manipulation within the submicrometer or even
nanometer range. Initial applications have been mainly to
provide accurate short travel motion (e.g., microscope focusing
device [1]), but efficient cooperated use of multiple piezoelec-
tric elements have expanded the application domain to include
longer travel applications as in microassembly (e.g., MEMS),
precision metrology, and process automation.

There are two main classes of linear-piezoelectric motors
(LPMs), classified according to their structures and driving
principles. The first class works on a direct-drive principle.
Deformations of a piezoelectric element are directly used
to drive the load for precise positioning [2]–[4]. The main
characteristics of the direct-drive piezoelectric motor are:
extremely high resolution and nanometer grade positioning
precision, short stroke which is generally under 500m, and a
high bandwidth. The second class of LPM operates instead on
an indirect-drive principle. Several direct-drive piezoelectric
actuators work in synchronization to produce a resultant linear
motion of the load. In [5], [6], inchworm types of indirect-drive
piezoelectric motors are presented which comprise at least
three direct-driven piezoelectric actuators. Two actuators act as
clamps, determining the direction of travel. The third actuator
expands and contracts along the motor shaft when input voltage
is applied, thus executing the motion. The generated force and
maximum moving speed are very low with this configuration,
although there is no physical limitation to travel length and
high resolution of five nanometers has already been achieved
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[4]. Another type of indirect-drive piezoelectric motor is the
ultrasonic motor or the acoustic motor which uses piezoelectric
components to generate ultrasonic waves and produce a linear
motion [7]–[10]. The characteristics of ultrasonic piezomotors
are: high resolution, unlimited travel, wide dynamic range
of velocity, hold stability at power off, and a small compact
structure. In this paper, we are mainly concerned with this type
of indirect-drive LPM.

While the piezoelectric actuator has high potential for appli-
cations in ultraprecision motion control systems, the highly non-
linear features associated with the dynamics of these elements
are challenges to how efficiently these potentials can be real-
ized. For the direct-drive type, hysteresis is the main part of the
nonlinear characteristics [11]. For the indirect-drive type, fric-
tion has been identified as the main problem to be addressed [7],
[12]. From the viewpoint of the control system, friction poses an
interesting and challenging dilemma to the control problem. On
one hand, it provides the primary transfer mechanism to bring
about the motion, and on the other hand, it opposes the realiza-
tion of precision motion control. The frictional characteristics
associated with servomechanisms are highly nonlinear in na-
ture, and a good friction model is especially important for appli-
cations involving high precision motion control of servomech-
anisms, where the frictional force needs to be adequately com-
pensated in order to improve the transient performance and to
reduce steady-state tracking errors. Model-based approaches are
usually proposed to for friction compensation. Even in adaptive
control of servomechanisms, an initial friction model is also cru-
cial to ensure smooth control signals and rapid parameter con-
vergence [13]. However, friction modeling has always been a
difficult and challenging problem [14]–[17]. Models of varying
complexity have been used to approximate the dynamics of fric-
tion [14]. However, under practical conditions, the adequacy of
the model for the control system to yield effective friction com-
pensation has always remained questionable. Other efforts have
been made toward more advanced control of precision motion
systems. In [18], a neural-network (NN) based feedforward as-
sisted proportional integral derivative (PID) controller was pro-
posed. A hybrid control strategy using a variable structure con-
trol (VSC) is suggested for submicron positioning control [19].
These methods need an explicit system model for the control de-
sign, and the performance achievable depends on the accuracy
of the model.

In this paper, we propose a learning-enhanced nonlinear PID
control strategy for an indirect-drive ultrasonic-type of LPM.
The control scheme does not require an accurate system model,
but it is capable of yielding good motion tracking performance,
as evident in the simulation study and experiments presented
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Fig. 1. Ultransonic-type LPM.

Fig. 2. Elliptical motion cycle.

in the paper. The nonlinear PID controller is composed of two
tracking differentiators (TDs) which can yield high quality dif-
ferential signal in the presence of disturbances and measurement
noise. With an additional learning controller, the maximum po-
sition tracking error can be further reduced by approximately
50%. As will be illustrated in the results forthcoming from the
simulation study and experiments, the control system is robust
to the presence of disturbances and measurement noises. Above
all, the structure of the control system is simple and directly in-
tuitive to the practitioners.

II. M ODELING OF LPM

Fig. 1 shows the principal structure of an ultrasonic-type LPM
considered in this work.

The stator vibrator is fitted with bending and longitudinal
piezoelectric actuators. They are driven by two electrical
sources of identical frequency, but with a phase difference that
is carefully controlled. At the vibration tip, an elliptical motion
is thus created, resultant of the elliptical and longitudinal
motion. The bending actuators convert a large electrical power
to mechanical output and the longitudinal actuator dynamically
changes the force along the pre-load direction to adjust the
frictional force between the stator and the rotor. A vibration
circuit working at resonant frequency is used to cause the
longitude and bending ceramic components to vibrate.

Fig. 2 shows the detailed operational process in a single el-
liptical motion cycle.

Assume the tip of the piezoelectric element, in contact with
the moving plate, is initially at pointa. It begins an elliptical
motion from this point, moving to pointf via pointsb, c, d, ande
in order. This motion will result in a translation of the plate from

Fig. 3. Friction model.

A to B. Subsequently, the tip of the piezoelectric element returns
to pointa from f, but there is no further resultant plate motion
since there is no contact made for this part of the motion. This
completes one motion cycle, and subsequent cycles are similarly
iterated. The velocity and direction of the moving plate can be
adjusted by changing the shape and phase of the ellipse. Thus,
there is a complicated function of frictional force acting during
a complete motion cycle.

Friction is inevitable in many practical systems and its effect
on machine performance has been demonstrated by a number of
researchers [14]. It is mostly noticeable at low velocity because
of the extremely high negative gain at velocities near zero. It
is a highly complicated process to attempt to build an explicit
mathematical friction model for the LPM because friction plays
a dual role: it does not simply contribute to the nonlinear dy-
namics (e.g., dead zone) of the LPM, but it also serves as the
driving force for the moving part. For the purpose of simulation,
a conventional and generally acceptable Tustin friction model
[14] will be adopted. It should be noted that the model is sim-
ulated as part of the dynamics of the LPM. The control system
does not require the friction model.

The LPM can be expressed as a second-order nonlinear dif-
ferential equation

(1)

where denotes the total moving mass,denotes the posi-
tion, denotes the applied force, and denotes the viscous
damping coefficient. , thus, represents the viscous friction
and represents the combined effects of negative viscous
and the Coulomb friction. The Tustin model for is given
by

(2)

where , , and are the three parameters of the model and
represents the standard sign operator.

Fig. 3 shows the friction characteristics around the static
point. It can be seen that there is a large force variation for
small variation of the velocity near zero.

Fig. 4 shows the SIMULINK block diagram of the LPM.
First order estimates of (force constant) and (velocity
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Fig. 4. SIMULINK block diagram.

Fig. 5. Velocity response.

damping coefficient) can be obtained from simple step experi-
ments as

(3)

where is the step size of a step input signal; is the cor-
responding steady-state velocity of the step response, andis
the system time constant obtained from the same step response.

The simulated velocity response to a sine input signal for the
nonlinear system is shown in Fig. 5.

It should be reiterated that the model presented in this sec-
tion is used mainly in the simulation of the actual LPM, when
assessing the performance of the control system. The control
system does not need an accurate or full model in its design.
The next section will elaborate on the details.

III. CONTROLLER DESIGN

The conventional PID controller is a widely used industrial
controller which uses a combination of proportional, integral,
and derivative action on the control error to form the output
of the controller. It is known that a linear combination of these
components can achieve a compromised performance in terms
of system response speed and stability. A nonlinear combination
can provide additional degree of freedom to achieve a much im-
proved system performance [20]. However, this improvement is
achieved at the expense of higher complexity in the controller.

Artificial intelligence approaches can alleviate some of the dif-
ficulties by fusinga priori information or expert knowledge into
the control design.

Another prominent difficulty with PID control is in the prac-
tical implementation of the derivative action. Derivative action
provides a degree of predictive control capability to yield faster
response without an excessive overshoot/undershoot, its prac-
tical merits are often questionable. In the presence of measure-
ment noise or rapidly changing disturbance signals, it is often
unclear as to whether derivative action will give any control
improvement. In some cases, a first-order filter is used in con-
junction with the differentiator. In other cases, derivative action
may just be switched off altogether. In this section, we adopt
a nonlinear TD to replace the differential component of the
PID controller for more effective and robust performance in the
presence of noise and other uncertainties. The TD can be fur-
ther expanded to serve as an extension states observer (ESO).
The ESO can act as a soft sensor of general disturbance sig-
nals arising in the control system. A feedforward control action
may then be taken in response to the observed disturbance be-
fore it affects the system performance. The concepts behind the
ESO and TD have been proposed in a general empirical form
[20]–[22]. While a rigorous analysis of their stabilities has not
been available, the viability for practical applications has been
demonstrated via simulation and experiments [20]–[22]. Feng
[23], [24] has specifically applied these concepts to speed con-
trol of induction motor.

In this paper, we will embed these concepts in the formulation
of a nonlinear PID controller, and demonstrate its performance
on a LPM for precise positioning control applications. The non-
linear PID control system will be augmented with a repetitive
learning control scheme for further performance enhancement
when the system executes repetitive operations. The error states
from previous iterations are used in a PID-type learning law to
produce an additional feedforward control output. As we will
show in the simulation study and experiments, the learning feed
forward control component can achieve arbitrarily good perfor-
mance. It only requires the feedback control system to be stable,
although a well-tuned feedback controller will help to expedite
the learning convergence.

Details of the various control components will be elaborated
on in the pursuing subsections.
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A. Nonlinear Linear Tracking Differentiator

Consider a system described by

(4)

has solutions meeting the requirements: , ,
when . Then, for any boundary integrable functions ,
the solution, , of the system

(5)

will satisfy

(6)

where is a constant.
One form of TDs, which meet above requirements, is as fol-

lows:

(7)

To reduce the phenomenon of oscillation, the function
may be replaced by function , where

and is a small constant and .
The system described by (7) becomes

(8)

The system described by (8) can be used as a high perfor-
mance TD of the tracking signal , and the differential com-
ponent in conventional PID controller can be replaced by the TD
for a more robust performance. Fig. 6 shows the performance of
the TD, when and it is perturbed by an
additive white noise component with the maximum amplitude
of 0.5. For clear illustration, the differential signals obtained, re-
spectively, by the TD and the general PID controller are normal-
ized by in Fig. 6. It can be seen that the differential tracking
performance of TD is much better compared to that of a pure
differentiator.

The design parameters can be selected empirically. In the
simulation and experiments, the empirical rule,
works well. Improved differential tracking performance can be
achieved by increasing the value ofR. However, an increase
in R also leads to more significant high frequency noise. Thus,
the choice of is a tradeoff between tracking performance and
noise rejection, and should be selected carefully with respect to
the actual requirements.

B. Nonlinear ESO

Suppose the system model is described by

(9)

Fig. 6. Differential signals.

where , is the disturbance
signal, and is a control coefficient. and denote the
input and output of the system, respectively. A nonlinear state
observer is designed to estimate system states, as well as an
extension state [22]. The nonlinear observer for the system is
described as

... (10)

where, are the estimated values of
, respectively, and are nonlinear compensation

functions. The state, , is called the extension state. Let

...
...

(11)

Equation (9) may be rewritten in the following form

... (12)

where and is an unknown function.
Denoting , it follows

that

... (13)
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Fig. 7. Nonlinear PID controller.

It has been shown in [19] the functions
can be chosen to stabilize the system (13) at the operating point.
Then, if the system is stable, for suitable nonlinear functions,

, it follows that

(14)

where is an arbitrarily small positive constant. Equation (14)
means that the extension state, , is the estimated value of

, which is really the uncertain value of the system
to be estimated. The nonlinear observer’s structure (10) is not
determined by the actual expression of , but only affected
by the variation range of . The function
(see Section III-C) will be used as the nonlinear compensation
functions, , .

C. Nonlinear PID Control

With two second-order TDs, a nonlinear PID controller can
be constructed as in Fig. 7.

TD1 and TD2 are two TDs which track input signal ,
output signal and their differentials. Variables, , , ,
and are their estimated values. and denote the position
and velocity tracking errors, respectively. Analogous to general
linear PID controller, the nonlinear combination of the error sig-
nals can be expressed as

(15)

where , , and are the PID control coefficients, is a
selected nonlinear function described by

(16)

where , are constants.
Fig. 8 shows the characteristics of the function. A linear

relationship is thus effectively used when to provide a
smoother control action whenis near zero.

Empirically, the design parameters may be selected according
to the guidelines , R , , ,

, and can be adjusted accordingly, following the many rules
available for standard PID control design.

Using a third-order ESO, an improved version of the non-
linear PID controller (Fig. 9) can be constructed which can deal
more effectively with disturbance signals arising in the
system. This system is called auto-disturbance rejection con-
troller (ADRC) [23].

Fig. 8. fal() function.

Fig. 9. Nonlinear state feedback controller.

The equation for nonlinear combination can be expressed as

(17)

The control law is thus

(18)

wherez is provided by the state estimator (10).
The nonlinear PID controller proposed has a more general

form compared to the linear PID controller, with more degree-
of-freedom in tuning the controller. However, how much perfor-
mance improvement can be achieved also depends on the choice
of the control parameters. The constant PID gains, , and

can be selected using the many PID tuning rules available
for linear PID control. Empirical rules are also suggested for
the nonlinear part of the controller in this section. A learning
approach will be further proposed in the next section to yield
efficient control when the task to be executed is repetitive in na-
ture.

D. Repetitive Learning Control

In many applications, the LPM can be subject to periodic ref-
erence input signal. For example, for a precision CNC elliptical
piston-turning machine, a high speed, high precision linear ac-
tuator is needed to track a 40-Hz periodic signal with a stroke of
0.5 mm [25]. For high performance engine pistons, a maximum
contour error of 4 m is required. A similar application is found
in [26].

The key idea of repetitive learning control is that the error
signals of previous periods are used to reduce the current error
caused by the periodic reference input. A precise mathematical
model, which is difficult to obtain, is not absolutely required.

In applications involving repetitive operations, discrete time
repetitive learning control technology for LPM to improve the
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Fig. 10. Repetitive learning control.

TABLE I
SPECIFICATIONS OFLPM

response to periodic reference inputs will be tested. As shown in
Fig. 10, the learning controller represents an additional feedfor-
ward control branch to the stabilized system which is controlled
by the nonlinear PID controller described in the earlier subsec-
tions.

A PID-type learning law is used for learning controller. The
learning law is described by

(19)

where is the learning control signal generated during
the th cycle for the th sampling point; is the cor-
rection function for the learning value. A proposed PID-type
correction function is given by

(20)

where is the number of sample points within a cycle.

IV. SIMULATION AND EXPERIMENT

To illustrate the effectiveness and applicability of the con-
trol scheme developed, simulation and real-time experiments
are carried out on a single axis linear stage manufactured by
Steinmeyer. The stage is driven by a SP-8 piezoelectric motor
which is manufactured by Nanomotion. Table I shows the speci-
fications of the stage and the motor. The DSPACE DS1102 con-
trol card is used in conjunction with MATLAB and SIMULINK
for the experiment.

The following system model is used for simulation:

(21)

A. Simulation Results

A sinusoidal reference signal, , is used
for the simulation. In addition, a disturbance signal described by

(22)

Fig. 11. Linear PID, under disturbance,d(t).

Fig. 12. Nonlinear PID with ESO under disturbance,d(t).

is simulated. The simulation results based on the use of a linear
PID controller and the nonlinear PID controller with the ESO
are shown in Figs. 11 and 12, respectively. For a fair compar-
ison, the linear PID controller is fine tuned to yield optimal per-
formance.

The nonlinear controller with the ESO exhibits an improved
tracking and disturbance rejection performance compared to the
linear PID controller. The maximum tracking error is reduced by
50%.

Finally, a learning controller is added to improve the tracking
precision. Figs. 13 and 14 show the control results with the
learning controller augmented. A maximum tracking error of

0.002 can be achieved after 30 cycles in the absence of dis-
turbances and 0.01 in the presence of disturbances. The error
curve is now completely different from the one of Fig. 12 due
to the additional learning control component. Although it is still
periodic, the frequency is changed.

Fig. 15 shows the error convergence curve. The error conver-
gence speed is dependent on the PID parameters of the learning
controller. In fact, the coefficients , , and can be changed
from one cycle to another to improve the system convergence
performance. Thus, for example, larger parameters for the
learning controller may be applied to obtain high convergence
speed initially, and they may be subsequently reduced to obtain
higher tracking precision.

B. Experimental Results

The real-time experimental results obtained on the physical
system are provided categorically below.
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Fig. 13. Learning nonlinear controller.

Fig. 14. Learning nonlinear controller under disturbance,d(t).

Fig. 15. Error convergence curve.

1) TD Performance:Fig. 16 shows the differential output
signals obtained using the TD and a pure differentiator (dy dt)
(with a low-pass filter) when a white noise disturbanced t

appears at the input. Although improvement is observed in the
TD which gives a smoother differential signal, it is not very
significant as the mechanical system acts as an inherent high
frequency filter to the input signal. An interesting observation
is that the experimental results in Fig. 16) are very similar to the
simulation results (Fig. 5), thereby verifying to some extent the
adequacy of the model adopted.

When the disturbance appears at the output, the improve-
ment using TD is clearly evident from the respective signals in
Figs. 17 and 18. A clean differential signal is obtained from the
TD. From the pure differentiator (dy dt), the profile of the dif-
ferential signal is almost completely lost in noise.

Fig. 16. Differential signals.

Fig. 17. Differential signals fromDT. Curved is the ideal differential signal.

Fig. 18. Differential signal fromdy=dt.

2) Nonlinear PID Controller Performance:Figs. 19 and 20
show the system tracking errors resultant of using the nonlinear
PID controller and the linear PID controller. The tracking error
from the nonlinear PID controller is about 50% that from the
linear PID controller. The maximum error occurs at the transi-
tion point when the motion changes direction and the full dosage
of friction is experienced.

3) Learning Nonlinear PID Performance:Next, a learning
mode is added to the nonlinear PID controller. Fig. 21 shows
the results. The tracking error in Fig. 21 is obtained at the 20th
learning cycle, which is a further 50% of the tracking error ob-
tained from a nonlearning NPID controller. Fig. 22 shows the
control output of the controller. The sign of the control output
is changed when the motion switches direction.
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Fig. 19. Tracking error—Nonlinear PID control.

Fig. 20. Tracking error—Linear PID.

Fig. 21. Tracking error—20th cycle.

Fig. 22. Control output.

V. CONCLUSION

In this paper, we have demonstrated the effectiveness of a
nonlinear PID controller augmented with a learning strategy
when applied to precision motion control of piezoelectric
actuators. The nonlinear PID controller is composed of two
TDs which can yield high quality differential signal in the
presence of disturbances and measurement noise. With an
additional learning controller, the maximum position tracking
error can be further reduced by approximately 50%.
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